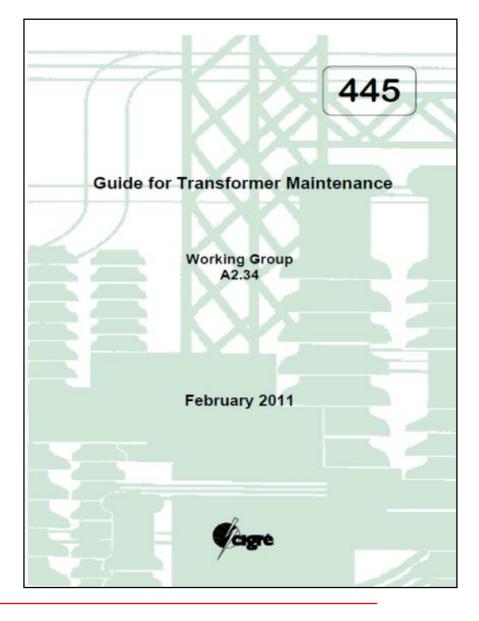


Transformer condition assessment with an integrated test van

Testing and Standards for Power Transformers

- CIGRE
 - CIGRE Brochure 342 (SFRA-FRAX)
 - CIGRE Brochure 414 (DFR-IDAX)
 - CIGRE Brochure 445 (Guide for Transformer Maintenance)
- IEC, TC 14
 - IEC 60076-1, Power Transformers
 - IEC 60076-2, Temperature rise
 - IEC 60076-3, Insulation levels, dielectric tests and external clearances in air
 - IEC 60076-18, Measurement of frequency response (SFRA)


(SFRA)

- ANSI, IEEE Transformer Committee
 - IEEE C57.152 (former IEEE 62-1995)
 - IEEE C57.12.00-2006 (under revision)
 - IEEE C57.12.90-2006 (under revision)
 - IEEE PC57.149
- GOST
 - GOST 11677-85, Power Transformers

		EEE Osol Kä-1995 In in Kala on Ka-1996		
IEEE Guide for I Testing of Electr Part 1: Oil Filled Regulators, and	ric Power Appa Power Transfo	ratus —		
-				C
			E	11
of But	Monutements Committee			60076
EEE Power Engineering Society				eato
Approved March 15, 1985 IEEE (Interchardie Bosand				25
Abstract, Depreses tests and resource	energy fast, are party-read in the fit	nd on on-minimumd	nt 1:1999 et 1:1999	
Redrect, Depresito tests and messure power transformers and regulators are d to a service manner to transformers. Tests the subsystem of the cost being exervice context automation. Additional information	are presented spatientalization cates d. A diagnostic shart is reliabed as a or is provided regarding agentational	presidencesting on additionalized by the set and measuring		
termigaen Kayanete: Gir Kee numbrimare, sepula termig, undinge, bushinge, measurig hu	tors reactors, diagnostit evaluation, de taponorgine, coré, tanka, senery	pfline sectory, field	e -	
Engraphic Half of the Herbalk of Decrement and A Multiple science (Multiple: 1985 Annual 1994)	American Doposition on Web States / America			
CON 1 CONT 4214 No. Jan 7 The control to 14 April 2010 The International Products The Control of the	ton, it is independent commonly of	with which the pro-		
-66		242		
-77		342		Numbers de set
		342	00.400	Rumani da 141 Reference o con-1.1803-A
	-CONDITION ASS	ESSMENT		Numeric de let Reference a COTé-1,7883-A
	NSFORMER WIND	ESSMENT		Numero de este Reference a DOTE-1.1983-A
OF TRAI	NSFORMER WIND	ESSMENT		Numero de las Referencias COTO-1.1983-A
OF TRAI	NSFORMER WIND	ESSMENT		Normetto de 146 Reference a DOTE-1.1983-A
OF TRA	NSFORMER WIND	ESSMENT		Numero de las References a COTE-1.1983-A
OF TRA	NSFORMER WIND CY RESPONSE AP	ESSMENT		Numero de ses References a COTA-1.7883-A
OF TRA	Working Group	ESSMENT		Normality die Hel Reference of DOTE-1.7883-A
OF TRAI	Working Group	ESSMENT		Norman da est Parteresta 2019 - L'Internet 2019 - L'Internet
OF TRAI	Working Group	ESSMENT		Normalia da Asta Reference a CCT-1.1983-A
OF TRAI	NSFORMER WIND CYRESPONSE AF Working Group AZ 26	ESSMENT		Normania da esta Reference a CCTR-1.7983-A
OF TRAI	Working Group	ESSMENT		Normen de les References CCTR-1.3983-A
OF TRAI	NSFORMER WIND CYRESPONSE AF Working Group AZ 26	ESSMENT		Numero de ses Reference a COTR-1.1983-A
OF TRAI	NSFORMER WIND CYRESPONSE AF Working Group AZ 26	ESSMENT		ланана ак из Рефенная ССТВ-1.1983-А

Cigré Technical Brochure 445, 2011

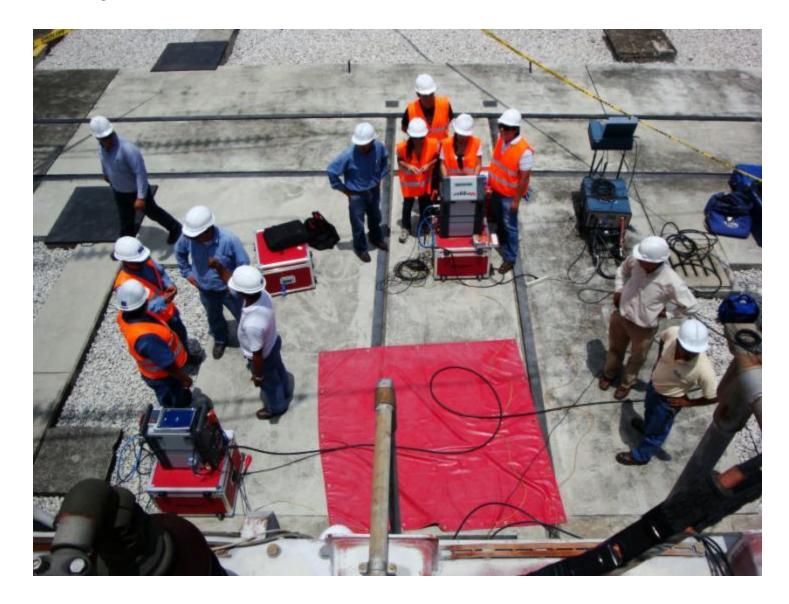
Guide for Transformer Maintenance

"Diagnostic" matrix CIGRE TB445

Type of Problem

	Magnetic Circuit Integrity						
	Magnetic Circuit Insulation						
	Winding Geometry						
	Winding/Bushing/OLTC Continuity						
	Winding/Bushing Insulation						
	Winding Turn to Turn Insulation						
-	Diagnostic Technique						
	Winding Ratio	•					
=	Winding Resistance			•			
ric	Magnetisation current	•					•
ect	Capacitance and DF/PF		•		•	•	•
	Leakage Reactance				•		
Basic Electrical	Insulation Resistance		•			•	
ä	Core Ground Test					•	
	Frequency Response of Stray Losses			•	•		
cal	Frequency Response Analysis	•			•	•	•
-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i	Polarisation/Depolarisation		•				
Ele	Frequency Domain Spectroscopy		•				
[p	Recovery Voltage Method		•				
Advanced Electrical	Electrical Detection of PD	•	•				
dva	Acoustical Detection of PD						
A	UHF Detection of PD						
	Dissolved Gas Analysis	•	•	•		•	•

Table 29: Electrical Tests and DGA Diagnostic Matrix


Transformer testing by Megger

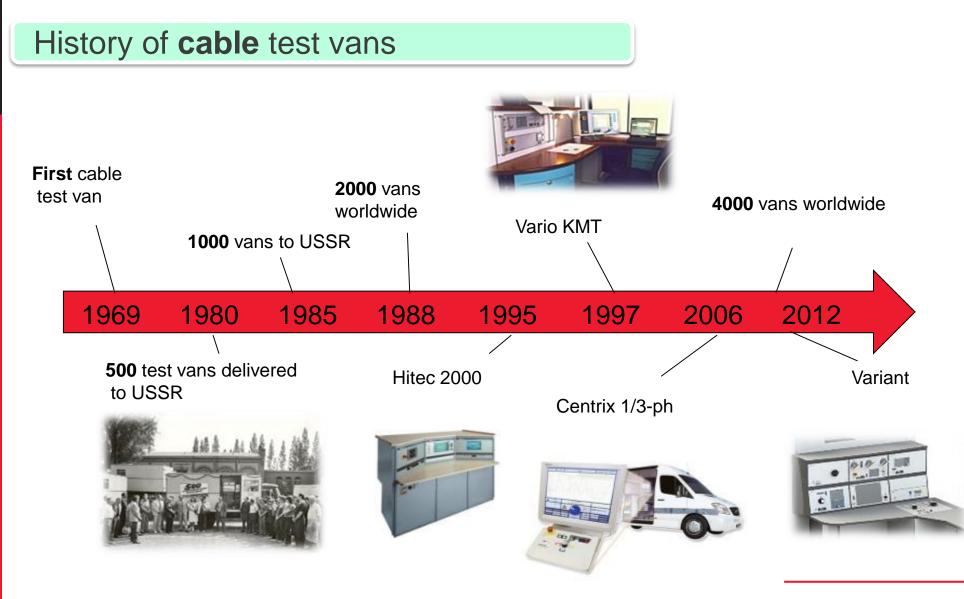
STANDARD TEST TYPES		MEGGER TEST SETS												
Compo	nent	Test	Delta	IDAX	МІТ	FRAX	MLR	TTR	мто	LTC 135	МоМ	TRAX	OTS	KF
		Resistance							X	X		Х		
		Ratio/polarity						X				X		
		Excitation current	Х	Х				X				Х		
Windings		Short-circuit impedance				X	Х					Х		
		Frequency response analysis				Х								
		Insulation resistance			X									
		Capacitance	X	X								Х		
		Power factor/tan delta	Х	X								Х		
		Dielectric frequency response		X										
		Capacitance	Х	X								Х		
Bushi	ngs	Power factor/tan delta	Х	X								Х		
	-	Dielectric frequency response		X										
		Water content												Х
Insulati	ng oil	Dielectric strength											Х	
		Power factor/tan delta	Х	X								Х		
Cellulose insulation		Moisture content		Х										
		Resistance							X	Х		Х		
		Ratio						X				Х		
-	Load	Continuity (make before break)							X	Х		Х		
Tap changers De-		Dynamic resistance (DRM)								Х		Х		
	Resistance							X	X		Х			
	energized	Ratio						X				Х		
	Insulat			X	X									
Core/T	ank	Frequency response analysis				Х								
-		Ground test									х	Х		

So many tests to do?

Ambient conditions?

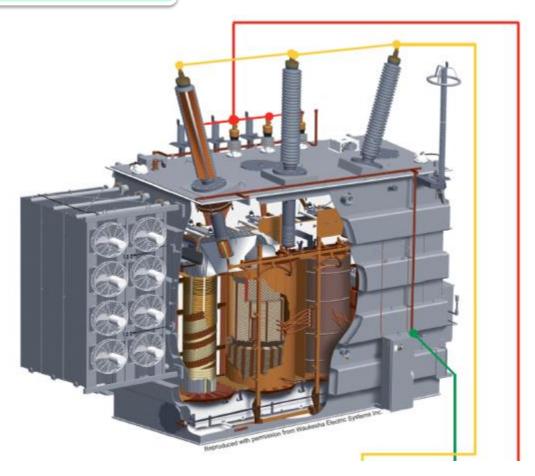
Or tangled cables?

Number of climbs up and down a ladder?


Cable test van

The Variant: cable fault location, cable testing and diagnosis in a modular system

Megger.


History of transformer test vans

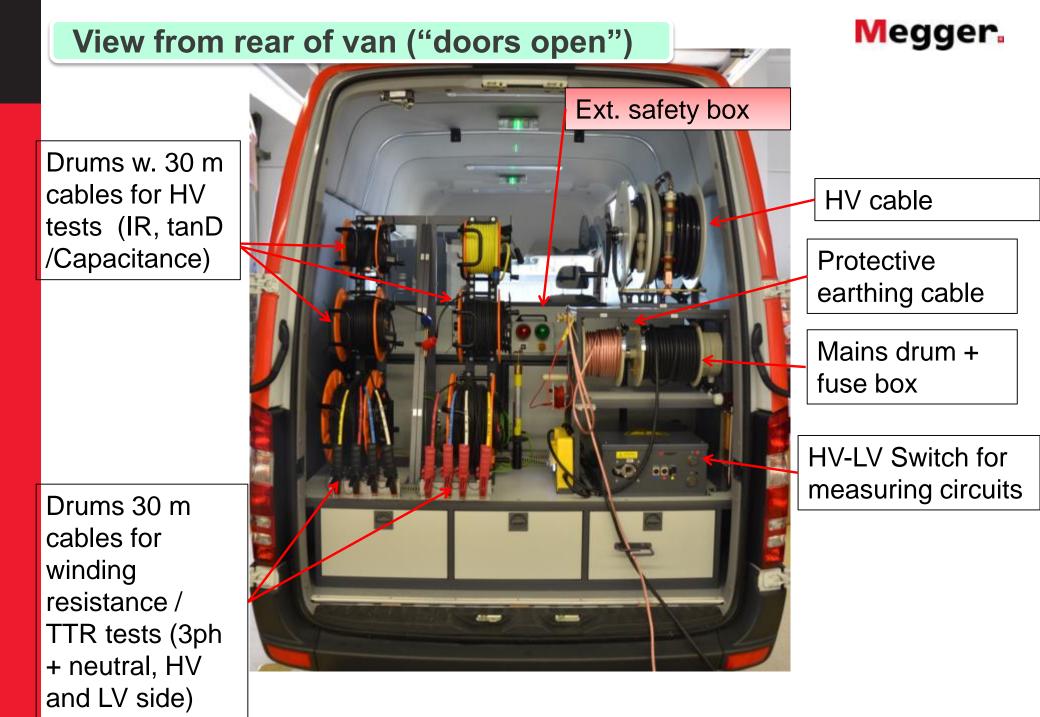
Designation

- ≻Commissioning
- Preventive maintenance
- Outage troubleshooting
- ≻After repair check
- ➤Issues that can be identified:
- deterioration of electrical insulation
- mechanical displacements/damage
- winding-, bushing-, tap changer-, core- and oil condition
- check for ratio, vector group, no-load& load losses

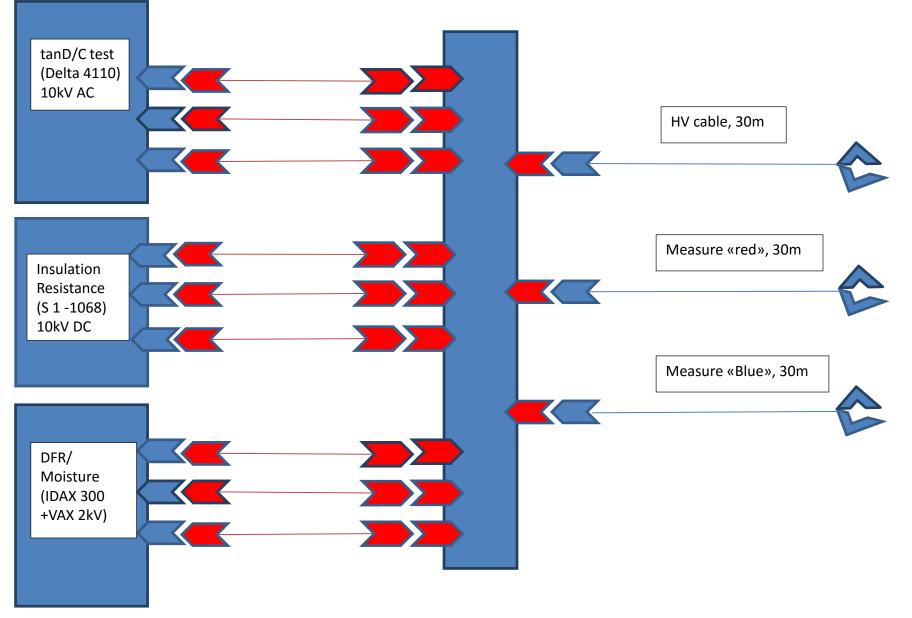
Unique features

- Routine and advanced diagnostic tests
- Centralized control and reporting
- >Two sets of cable (HV & LV) shared among instruments
- >Automated test circuit arrangement and switching process
- ➢OLTC remote control
- Safe operation and user guidance through the tests

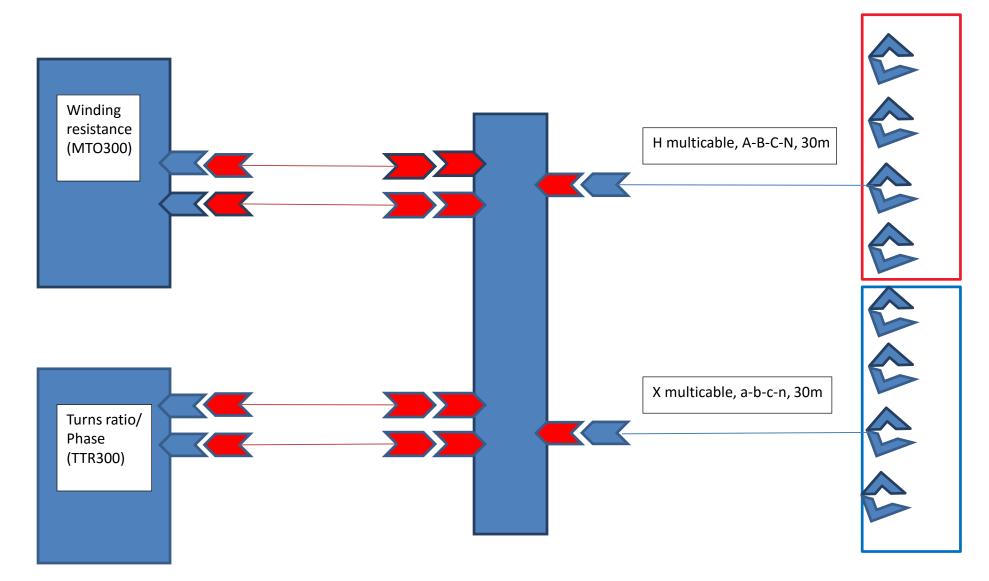
Routine and diagnostic tests onboard:


- ➢Insulation Resistance
- DC Winding resistance / Tap Changer Test
- Capacitance and dissipation factor for transformer and bushings
- ➤Turn ratio and vector group verification
- Moisture-in-cellulose assessment with DFR technique
- Short circuit impedance (optional)
- Power losses for no-load and short circuit conditions (optional)
- Frequency Response Analysis (optional)
- Withstand tests at elevated voltage up to 100 kV AC 50 Hz and 70 kV DC (optional)
- ➢Oil breakdown test (optional)

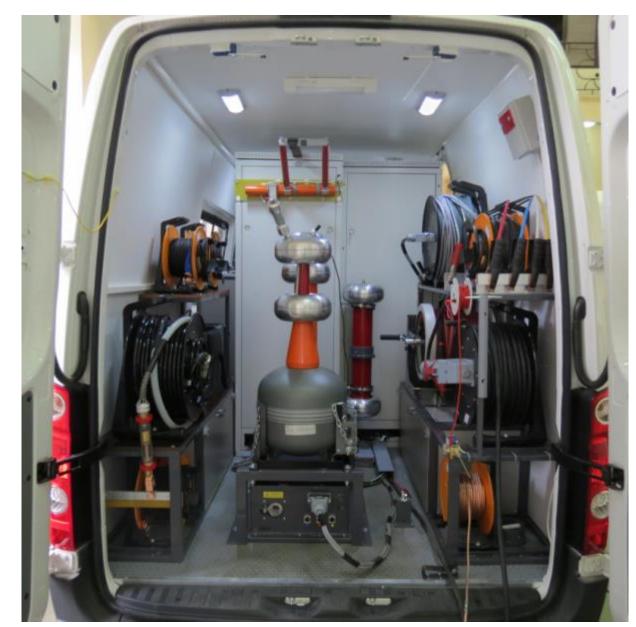
Operators view (inside)



Power supply, control and safety unit 19" cabinets with test instruments inside

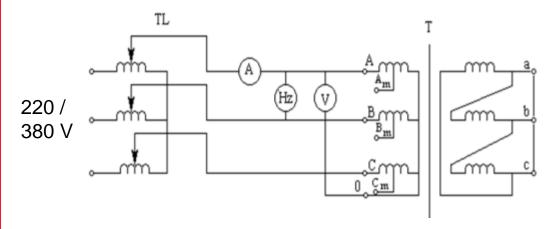

HV commutator

LV commutator


Connection diagram

		LV Test Connection for MTO / TTR	HV Test Connection for DELTA / \$1
		"H" "X" n a b c A B C N	n a b c A B C N
Mandatory connection sequence:		Notes:	
Protective earth		The test van should never be operated without the ear respect of mains operation as well as generator operation	
2 FU cable (earth spike)		The earth spike should be driven into the ground as close	e as possible to the vehicle.
3 External safety device		Norm-compliant signalling and Emergency Stop accordin	g to DIN EN 50191 / VDE 0104.
4 HV connection		Observe the five safety rules!	
5 Power supply	i	Connect the power cord to a mains outlet or a busbar i test van and of the specific country.	n compliance with the requirements of the
		If the conditions at the site make it impossible to esta described above, it is the responsibility of the operator to test van by taking appropriate measures.	blish the electrical connection in the way ensure the safety of the connection to the

Optional: HV source on board



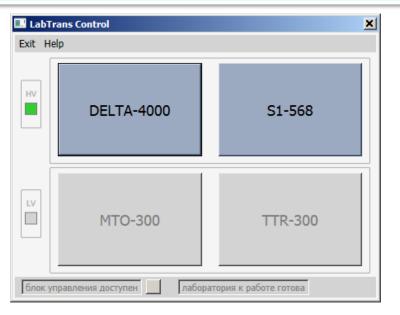
Single phase HV source ≻100 kV AC 50 Hz ≻70 kV DC

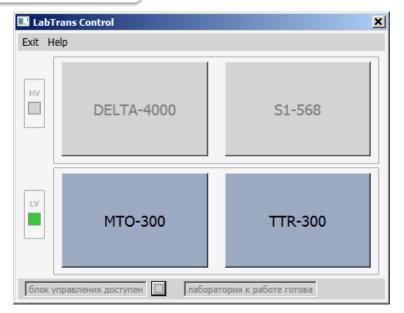
Loss measurement at reduced voltage of 380 / 230 V is a good compromise under on site conditions (due to limitations in power and voltage sources) >No-load circuit

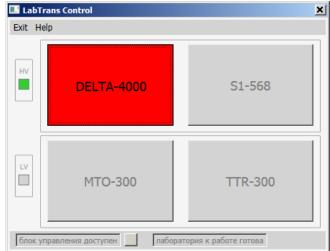
Short circuit condition

Important to have a factory data on losses at reduced voltage as reference!

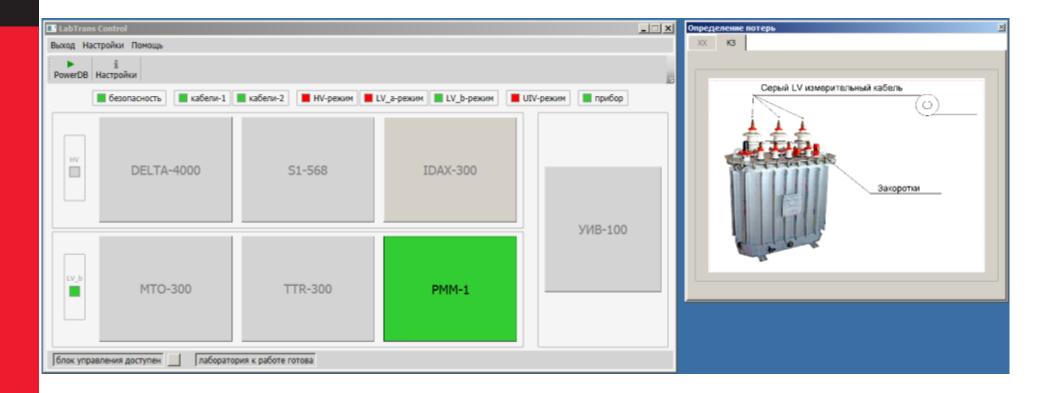
Well-known components:

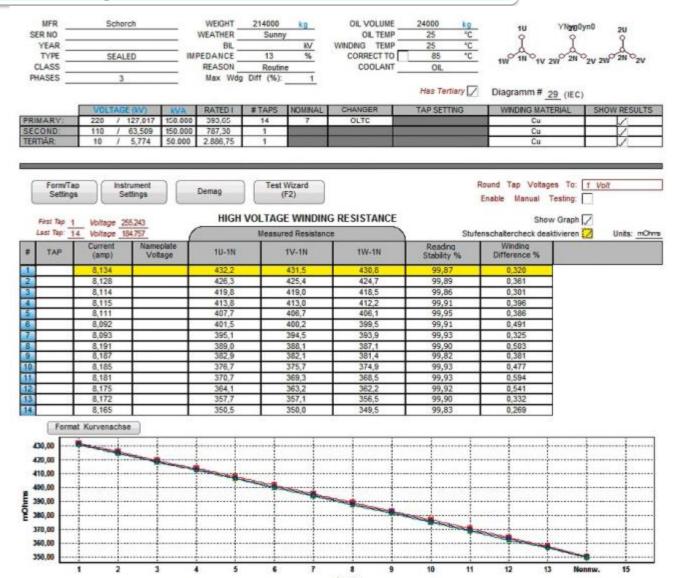

Specification:


Parameter	Value				
Power supply	1 or 3 phase, 230-400 V, 50-60 Hz				
Test leads	30 m				
Insulation testing (IR, DAR, PI, DD, SV)					
Test voltage	up to 10 kV				
Range of measurement	100 kOhm15 TOhm				
Charging current	2 mA, 6 mA (short circuit)				
Noise immunity	8 mA				
Dissipation factor (tan ō)					
Test voltage	0-12 kV				
Test current (at 12 kV)	300 mA (4 minutes), 100 mA (continuous)				
Test frequency range	45-70 Hz (12 kV), 15-400 Hz (4 kV), 1-500 Hz (250 V)				
Measurement range of dielectric losses tan δ and capacitance	0-100 (0-10,000%), (max. resolution 0.001%) 0-100 μF, (max. resolution 0.01 pF)				
Individual temperature correction of tan $\boldsymbol{\delta}$ results	from 5°C to 50°C insulation test temperature to 20°C reference				
Noise immunity	Electrostatic 15 mA, Electromagnetic 500 µT, at 50 Hz				
Winding resistance and OLTC					
Core de-magnetisation	automatic				
Test current	up to 10 A				
Measurement range	1 µOhm – 2 kOhm				
Accuracy	+/- 0,25%				
Ratio and vector group					
Excitation voltage	up to 80 V				
Ratio measurement range	0,8 – 45000				
Phase deviation	+/-90°				
Accuracy	+/-0,1% +/- 0,3%				
No-load and short-circuit loss power (optional)					
Range of measured AC voltage	0-650 V				
Range of measured current	0-100 A				
Range of measured power	0-100 kW				
Frequency	10-1000 Hz				
Voltage withstand testing (optional)					
AC 50 Hz test voltage	0100 kV				
DC test voltage	0130 kV				
Load capacitance	0,01-1,9 nF				
Leakage current measurement	up to 100 mA				
Max. power consumption	20 kVA				
Frequency Response Analysis (optional)					
Moisture in cellulose assessment (optional)					
Control & data acquisition & reporting	PowerDB, LabTransControl				
Basic operating system	WIN 7				
Interface	RS 232, USB, Ethernet				



Software: Device selector




Optional: power loss measurement at reduced voltage

Complete report with PowerDB

Conclusions

- Transformer test van concept:
 - combines routine electric tests and advanced diagnostic techniques
 - allows a complete transformer check in field.
- Field experiences:
 - substantial testing time saving >70%
 - help prevent accidents
- Streamlined data handling:

 reporting, database for assessing results, comparing w previous tests and eventually establishing trend of the transformer condition